If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-x+9-5=0
We add all the numbers together, and all the variables
x^2+5x+4=0
a = 1; b = 5; c = +4;
Δ = b2-4ac
Δ = 52-4·1·4
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3}{2*1}=\frac{-8}{2} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3}{2*1}=\frac{-2}{2} =-1 $
| X^2+6x-x+9-5=0 | | 5-5x3+2= | | X^2+6x-x+9-5=0 | | 5-5x3+2= | | 5-5x3+2= | | 5-5x3+2= | | 5x-23=10(x-1) | | p-(7p/2)=15 | | H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | 12x=−15 | | 12x=−15 | | H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | 12x=−15 | | 12x=−15 | | 12x=−15 | | x=5-5x3+2 | | 4x-3(2x-1)=7x-(5x+3) | | x=5-5x3+2 | | 4x-3(2x-1)=7x-(5x+3) | | 4x-3(2x-1)=7x-(5x+3) | | 4x-3(2x-1)=7x-(5x+3) | | 4x-3(2x-1)=7x-(5x+3) | | 5^4x-4=1 | | 3*x=-x*300 | | 6x+7(0)=18 | | 5x^2+4x-44=0 | | 5x^2+4x-44=0 |